=============== Getting Started =============== Load the class and data ----------------------- The main class of scikit-gstat is the Variogram. It can directly be imported from the module, called skgstat. The main class can easily be demonstrated on the data module available with version `>=0.5.5`. .. ipython:: python :okwarning: import skgstat as skg import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') data = skg.data.pancake(N=500, seed=42) print(data.get('origin')) coordinates, values = data.get('sample') The Variogram needs at least an array of coordinates and an array of values on instantiation. .. ipython:: python V = skg.Variogram(coordinates=coordinates, values=values) print(V) Plot ---- The Variogram class has its own plotting method. .. ipython:: python :okwarning: @savefig default_variogram.png width=7in V.plot() plt.close() With version 0.2, the histogram plot can also be disabled. This is most useful, when the binning method for the lag classes is changed from `'even'` step classes to `'uniform'` distribution in the lag classes. .. ipython:: python :okwarning: V.set_bin_func('uniform') @savefig variogram_uniform.png width=7in V.plot(hist=False) plt.close() Mutating -------- One of the main strenghs of :class:`Variogram ` is its ability to change arguments in place. Any dependent result or parameter will be invalidated and re-caluculated. You can i.e. increase the number of lag classes: .. ipython:: python :okwarning: V.n_lags = 25 V.maxlag = 500 V.bin_func = 'kmeans' @savefig default_variogram_25lag.png width=7in V.plot() plt.close() Note, how the experimental variogram was updated and the model was fitted to the new data automatically.